
Contracts,	Purpose	Statements,	
Examples	and	Tests

CS	5010	Program	Design	Paradigms	
“Bootcamp”
Lesson	1.6

1
©	Mitchell	Wand,	2012-2015
This	work	is	licensed	under	a	Creative Commons Attribution-NonCommercial 4.0 International License.

Objectives

At	the	end	of	this	lesson,	students	will	be	able	
to:
• Write	a	contract	and	purpose	statements	for	
simple	functions.

• Provide	examples	showing	sample	arguments	
and	 intended	results.

• Write	down	the	examples	as	human	readable	
comments	within	the	program.

Lesson	Outline

In	this	lesson	we'll	talk	about	two	more	steps	in	
the	Design	Recipe:
• Step	2:	Contract	and	Purpose	Statement
• Step	3:	Examples	and	Tests
We'll	also	talk	about	a	few	other	things,	like	how	
to	choose	good	names	for	your	functions	and	
variables.

The	Function	Design	Recipe

The	Function	Design	Recipe
1.	Data	Design
2.	Contract	and	Purpose	Statement
3. Examples	and	Tests
4.	Design	Strategy
5.	Function	Definition
6.	Program Review

Step	2:	Contract	and	Purpose	
Statement

• Contract: specifies	the	kind	of	input	data	and	the	
kind	of	output	data

• Purpose	Statement: A	set	of	short	noun	phrases	
describingwhat the	function	is	supposed	to	
return.	These	are	typically	phrased	in	terms	of	
information,	not	data.	
– They	generally	take	the	form	GIVEN/RETURNS,	where	
each	of	these	keywords	is	followed	by	a	short	noun	
phrase.

– When	possible,	they	are	phrased	in	terms	of	
information,	not	data.

5

Examples	of	Contract	and	Purpose	
Statements

f2c : Real -> Real
GIVEN: a temperature in Fahrenheit
RETURNS: the corresponding temperature in Celsius

add-cat-to-scene : Cat Scene -> Scene
GIVEN: a Cat c and a Scene s
RETURNS: A Scene like s, except that the Cat c has
been painted on it.

GIVEN: the inner and outer radii of a ring,
RETURNS: its area

6

data
information

What	makes	a	good	purpose	
statement?

• It	gives	more	information	than	just	the	contract.		For	
example

GIVEN: an Integer and a Boolean
RETURNS: an Integer

is	not	a	good	purpose	statement
• It	is	specific.	Ideally,	a	reader	should	be	able	to	figure	

out	what	a	function	returns	just	by	reading	the	
purpose	statement
– perhaps	along	with	examples,	other	documentation,	etc.
– but	WITHOUT	reading	the	code!

• We’ll	learn	more	about	purpose	statements	in	Lesson	
2.4.

• A	good	choice	of	function	name	is	important.	
• When	a	function	is	used	in	some	other	piece	of	
code,	the	reader	should	be	able	to	tell	roughly	
what	a	function	computes	just	by	looking	at	its	
name.	

• If	further	detail	is	needed,	then	the	reader	can	
refer	to	the	purpose	statement	of	the	function.

• If	the	function	name	is	chosen	well	and	the	
purpose	statement	is	written	well,	the	reader	
should	rarely,	if	ever,	need	to	refer	to	the	function	
definition.

Good	Function	Names	are	Important

8

For	more	discussion,	see	What's	in	a	Name?

Conventions	for	Good	Function	Names

• Function	names	should	almost	always	be	nouns	
• Should	describe	the	result	of	the	function	
– e.g. area, not compute-area

• Predicates	should	end	in	? :	e.g.,	square?
(pronounced	"huh?",	as	in	"square-huh?")

• Use	first	component	of	the	name	to	distinguish	
similar	functions	with	different	arguments,	e.g.:
– circle-area, ring-area
– book-price, total-order-price

Conventions	for	Good	Names

• In	Racket,	"-"	and	"?"	are	legal	characters	that	
may	occur	in	names.

• Use	the	minus	sign	to	separate	components	of	
a	name,	e.g.	total-order-price

• Use	the	question	mark	to	name	predicates:	
eg,	square? .

• These	are	our	conventions.		Other	languages	
have	other	conventions;	you	should	follow	
them.

Argument	Names
• We	use	short	names	for	arguments:
– b for	a	Book

• Or	mnemonic	names:
– cost,	price

• Qualified	names:
– mouse-x,	bomb-x

• Avoid	lame	names,	like	list1 .		Names	should	refer	to	
the	information,	not	just	the	data	type,	whenever	
possible.

• These	are	our	conventions.	Your	workplace	may	have	
different	conventions	for	argument	names.

Numeric	Data	Types

• In	Racket,	Number	includes	Complex	numbers,	
so	we'll	hardly	ever	use	Number.

• Integer vs.	NonNegReal vs.	PosReal ?
– look	to	the	data	definition.		If	your	number	
represents	a	quantity	that	is	always	non-negative	
(say,	a	length	or	an	area),	then	call	it	a	NonNegInt.

– if	we're	not	dealing	with	physical	quantities,	then	
we'll	typically	use	Integer.

– Your	function	has	to	handle	any	value	of	the	type	it	
says	in	the	contract.

12

Step	3:	Examples	and	Tests

• Examples	show	sample	arguments	and	results,	
to	make	clear	what	is	intended.

• This	may	include	showing	how	the	function	
should	be	called.

• It	should	also	illustrate	the	different	behaviors	
of	the	function.

• How	many	examples,	and	what	kind,	will	
depend	a	lot	on	the	function

Examples	of	Examples	(1)

• If	the	function	is	a	linear	function	of	a	single	
input,	two	examples	are	sufficient	to	uniquely	
determine	the	function.

• We	saw	this	for	f2c :
;; (f2c 32) = 0
;; (f2c 212) = 100

14

Examples	of	Examples	(2)
• If	the	function	takes	an	argument	that	is	itemization	or	
mixed	data,	then	choose	examples	from	each	subclass	
of	the	itemization.

• Example:
;; (next-state "red") = "green"
;; (next-state "yellow") = "red"
;; (next-state "green") = "yellow"
• If	your	function	uses	“cases”	to	divide	a	scalar	data(*)	
type	into	classes,	choose	examples	from	each	class.

(*)	we’ll	cover	“cases”	in	a	later	lesson.

Examples	of	Examples	(3)
• Avoid	coincidences	in	your	examples.
• This	example	is	coincidental:

(book-profit-margin
(make-book "Little Lisper" "Friedman" 2.00 4.00))
= 2.00

– Is	the	answer	2	because	we	subtracted	2	from	4,	or	
because	it	is	the	third	field	in	the	book?	

• This	example	is	not	coincidental:
(book-profit-margin
(make-book "Little Lisper" "Friedman" 2.00 5.00))
= 3.00

– we	must	have	subtracted	2	from	5	to	get	3.

Make	your	examples	readable
;;; Here’s an example: a rocket simulation.

;; Information Analysis:
;; We are simulating a rocket, which is at some altitude
;; and is travelling vertically at some velocity.

;; a Rocket
(define-struct rocket (altitude velocity))

;; A Rocket is a (make-rocket Real Real)
;; INTERPRETATION:
;; altitude is the rocket's height, in meters
;; velocity is the rocket's velocity,
;; in meters/sec upward

17

Not-so-readable	examples
;; EXAMPLE:
;; (rocket-after-dt (make-rocket 100 30) 0)
;; = (make-rocket 100 30)
;; (rocket-after-dt (make-rocket 100 30) 2)
;; = (make-rocket 160 30)

• What	do	these	examples	illustrate?		Where	did	those	
values	come	from?

• These	are	very	simple	structures,	but	for	more	
complicated	structures	you’d	have	a	hard	time	telling.
– and	so	would	your	grader,	or	boss!

• And	if	you	change	the	representation	of	rockets,	you’ll	
have	to	change	all	your	examples,	too!

18

Better	Examples
(define rocket-at-100 (make-rocket 100 30))
(define rocket-at-160 (make-rocket 160 30))

;; (rocket-after-dt rocket-at-100 0) = rocket-at-100
;; (rocket-after-dt rocket-at-100 2) = rocket-at-160

• Here	we’ve	introduced	mnemonic	names	for	each	of	the	
example	values.	These	could	serve	as	examples	for	the	data	
definitions,	too.

• You	can	inspect	those	definitions	to	check	whether	they	
represent	the	rocket	they	are	supposed	to	represent.

• The	example	is	in	terms	of	information,	not	data.
• If	you	decide	later	to	change	the	representation,	you	can	still	

use	the	examples.

19

Turn	your	examples	into	tests

(begin-for-test
(check-equal? (f2c 32) 0)
(check-equal? (f2c 212) 100))

• Tests	live	in	your	file,	so	they	are	checked	every	
time	your	file	is	loaded

• Exact	technology	for	tests	may	change;	see	the	
example	files	for	current	technology

• LOTS	more	to	say	about	testing,	but	this	is	
enough	for	now.

20

Summary

• In	this	lesson,	you	have	learned	how	to:
–Write	a	contract	and	purpose	statements	for	
simple	functions.

– Provide	examples	showing	sample	arguments	and		
intended	results.

–Write	down	those	examples	as	human	readable	
comments	within	the	program.

– Turn	your	examples	into	executable	tests.

21

Next	Steps

• Study	the	file	01-3-rocket-examples.rkt	in	the	
Examples	folder.

• If	you	have	questions	about	this	lesson,	post	
them	on	the	discussion	board.

• Go	on	to	the	next	lesson.

22

